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Abstract. Although the optimization of a static Fabry–Perot interferometer (FPI)—used as a Doppler shift dis-
criminator in wind lidar—has been proposed, it cannot be applied to the scanning FPI used in the high-spectral
resolution lidar for temperature detection. After a comparison, the optimal scanning implementation is chosen
and a new optimization scheme is proposed. The free spectral range (FSR) of the FPI is determined by the width
of the Rayleigh spectrum. Then, for analytical purposes, the transmission of Rayleigh backscattering through an
FPI is simplified to be a superposition of a Gaussian function and a constant background. The maximum like-
lihood estimation and the Cramer–Rao bound theory are used to derive an analytic expression of the temper-
ature error. Thus, the effective reflectance of the FPI can be optimized. Finally, assuming known atmospheric
temperature–pressure–density profiles, backscattering raw signals are simulated using the optimized parame-
ters of the FPI and some other key system parameters of our existing lidar system. Comparisons between the
assumed and retrieved temperature profiles revealed that error <2 K can be achieved in the altitude range of 15
to 40 km, even with the disturbance of aerosol contamination. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.OE.55.8.084107]
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1 Introduction
The neutral atmospheric temperature profiling techniques are
attracting interest for the research of various atmospheric
phenomena.1,2 Specifically, temperature lidars have shown
attractive advantages, such as high accuracy and high spatial
and temporal resolutions.3 Generally, the rotational Raman
lidar and the Rayleigh integration lidar are the most popular
remote sensing techniques for atmospheric temperature
profiling in the troposphere and the stratosphere, respec-
tively.4,5 Recent research show that the troposphere influences
the stratosphere mainly through atmospheric waves propagat-
ing upward. Conversely, the stratosphere organizes the wave
forcing up from below to form long-lived changes in its cir-
culation and exerts impact on the tropospheric weather and
climate.6,7 Thus, accurate temperature profiling is essential
to investigate the underlying mechanisms for some phenom-
ena in this region. However, the temperature remote sensing
near the altitude of tropopause (which ranges in height from
an average of 9 km at the poles to 17 km at the equator) is still
a challenging work. On the one hand, the Rayleigh integration
lidar is sensitive to the aerosol contamination. Unfortunately,
the density of stratospheric aerosols has been increased
steadily due to the volcanic eruptions, such as the Pinatubo
eruption (in June 1991) and Manam eruption (in January
2005), reaching heights of 34 km.8,9 As the aerosol cloud
from the volcanic eruptions decays, the aerosol layer has
decreased to very low optical depth in the stratosphere but

can still be observed using dual polarization lidar.10 Ground-
based lidars reveal that the stratosphere aerosol load has
increased since 2000 at 5% to 7% per year.11 Recent research
also shows that volcanic eruptions need not be strong enough
to inject sulfur directly to the stratosphere. The SO2 is lofted
into the lower stratosphere by deep convection and the cir-
culation associated with the Asian summer monsoon while
converting to sulfate aerosol gradually.12 Furthermore, the
aerosol properties vary quickly in time; the stratospheric
aerosol could not be treated as a stable background, and
its influence could not be eliminated in the data processing
as in the reported Rayleigh integration lidar.4 On the other
hand, the rotational Raman scattering cross is quite low.
Even using a powerful laser, large-area telescope, and
sophisticated filters, the signal-to-noise ratio cannot be guar-
anteed for temperature detection near the altitude of tropo-
pause, especially in day-time operation.13

A good solution to the above dilemma is turning to the
temperature profiling technique based on the so-called high
spectral resolution lidar (HSRL), since the Rayleigh back-
scattering signal is strong enough in the altitude near 20 km,
and the technique is immune to the aerosol contamination.14–18

As an example, an HSRL is incorporated into a Rayleigh
Doppler wind lidar to eliminate the broadening or narrowing
effect of Rayleigh backscattering due to temperature change,
which is not accounted for by an edge detection Rayleigh
lidar receiver. In the HSRL, the transmission of the Rayl
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eigh backscattering through a Fabry–Perot interferometer
(FPI) is obtained by scanning the cavity length of the
filter.19 In fact, a temperature profiling HSRL can also be
realized by scanning the frequency of the outgoing laser rel-
ative to a static FPI.14 Recently, the transmission of Rayleigh
backscattering is also proposed to be resolved with a Fizeau
interferometer and imaging the throughput on a multichannel
photomultiplier tube (PMT) array.14

Compared with the method using scanning FPI, the
HSRL with the Fizeau interferometer and multichannel PMT
array has its advantages and shortcomings. Although the
PMT array can reduce the measurement time,14 this kind
of sampling will cause sampling bias.20 As shown in Fig. 1,
the area of the blue bars represents the signal detected by the
PMTarray, the red dots represent the signal detected by scan-
ning the FPI, and below is the bias of the two implementa-
tions. Since the PMT array averages the signal on each
channel, the bias can be as large as 0.7%. On the contrary,
the detection of the scanning FPI can get the exact intensity
of the transmission, which has no bias during the sampling
process. Increasing the number of channels in the PMT array
will decrease this kind of bias when a Fizeau interferometer
is used. However, the cross-talk between the neighboring
channels and the anode uniformity of the PMT array will
introduce additional system errors. For example, the Licel
multispectral lidar detector provides spectral and range
resolved data with 32 channels. But the cross-talk between
the neighboring channels is 3%, and the anode uniformity
can be as large as 1:2.5, which will introduce distortion to
the spectrum. What is more, the inactive area between cath-
odes of the PMT array will waste 20% of the backscattering
collected by a telescope. This shortage can be reduced by UV
CCD, which samples the Fizeau interferometer fringes
with better quantum efficiency, finer spectral resolution,
and less cross-talk than a PMT array.21 Thus, the scanning
FPI method is optimal in our system.

There are also existing HSRL systems using vapor
absorption cells to retrieve temperature from the Rayleigh
backscattering.22–25 Due to the spectral characteristics of
absorption lines, the resolution of these systems is coarse,
requiring the definition of response functions an calibration
procedures, as well as the assumption of hydrostatic equilib-
rium for temperature retrieval. Furthermore, it is difficult to

arrange absorption cells for short wavelengths that would be
favorable, due to the λ−4 proportionality of the Rayleigh
backscattering cross section. Operating at UV wavelengths
also leaves fewer constraints due to eye safety for ground-,
air-, and space-borne lidar operations. In addition, the appli-
cation of high-resolution interferometers would provide a
higher resolution of the RB line shape, leading to better
accuracy even with reduced integration time.14 Thus, the
commercially available 355-nm laser and scanning FPI are
preferred in our system.

A HSRL based on cavity scanning FPI has been demon-
strated for temperature detection from 18 to 50 km.19 How-
ever, this lidar is designed for the stratospheric wind detec-
tion and is not so efficient for temperature profiling. To deal
with this question, an optimization algorithm is proposed in
this work.

The paper is organized as follows. First, the principle of
HSRL for temperature profiling is reviewed briefly. Second,
an optimization algorithm is introduced, where the key
parameters of the FPI are optimized. Third, to evaluate the
performance of the HSRL and demonstrate its immunity
against aerosol contamination, a simulation is performed.
Finally, a conclusion is drawn.

2 Principle
A block diagram of a typical HSRL for temperature profiling
is shown in Fig. 2. The outgoing laser is sent to the atmos-
phere vertically, after passing through a beam expander
(transmitter). The atmospheric backscattering is collected
and coupled into a transferring fiber by a telescope. The opti-
cal signal is then collimated and fed to an FPI. The transmit-
ted backscattering is converted into electrical signal by using
a photon detector. Finally, the electrical signal is recorded on
a multiscalar (in analog-to-digital or photon-counting model)
and processed in a computer. The key instrument in the
HSRL system is the scanning FPI.

There are different methods to measure the transmission
of backscattering through the FPI, such as scanning the laser
frequency relative to the FPI,14 changing the pressure inside
the FPI,26,27 and sweeping the cavity length of the FPI. We
are focusing on the last method, since we have used it in
several Doppler lidars successfully.19,28–31 By changing the
voltage on the piezoelectric ceramics settled between two
mirrors, the cavity length and the parallelism of the FPI can
be controlled with high accuracy. It is worth mentioning that
the optimization process proposed here is suitable to all the
scanning methods reviewed.

The transmission function of an FPI with cavity surfaces
parallel to each other perfectly is an Airy function, and a
single order of it is approximately a Lorentz function.32

The transmission can also be written in Fourier series as19

Fig. 1 (a) Sampling of the transmission curve of Rayleigh backscat-
tering through the FPI. (b) Bias between the sampling of PMT array
and the correct intensity. Fig. 2 Block diagram of a typical HSRL for temperature profiling.
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EQ-TARGET;temp:intralink-;e001;63;752hðνÞ ¼ Tm ·

�
1þ 2

Xþ∞

n¼1

Rn
e cosð2πnν · cos θ∕ΔνFSRÞ

�
;

(1)

where Re is the effective reflectance, ν is the optical fre-
quency relative to the center frequency of the laser (unless
otherwise indicated, the frequency mentioned in this paper is
the optical frequency relative to the center frequency of the
laser), θ is the angle of incidence of the incident light, and
ΔνFSR is the FSR.21 Tm ¼ Tpð1 − ReÞ∕ð1þ ReÞ, where Tp
is the peak transmission expressed as

EQ-TARGET;temp:intralink-;e002;63;622Tp ¼ ½1 − As∕ð1 − ReÞ�2; (2)

and As is the absorptance of the surface.
The spectrum of the backscattering is broadened due to

the random thermal motions of the air particles. The aerosol
backscattering spectrum IM can be approximated as the spec-
trum of the outgoing laser IL, since the Brownian motion of
aerosol particles does not broaden the spectrum of Mie back-
scattering significantly.26 In this work, we focus on the tem-
perature profiling near the tropopause, where the Brillouin
scattering is negligible and the molecular motion is thermally
dominated.33,34 Thus, the backscattering spectrum is a super-
position of the Mie backscattering and the Rayleigh back-
scattering expressed, respectively, as

EQ-TARGET;temp:intralink-;e003;63;457IMðνÞ ≈ ILðνÞ ¼ ð ffiffiffi
π

p
ΔνLÞ−1 expð−ν2∕Δν2LÞ; (3)

and

EQ-TARGET;temp:intralink-;e004;63;414IRðνÞ ¼ ð ffiffiffi
π

p
ΔνRÞ−1 expð−ν2∕Δν2RÞ; (4)

where ΔνL and ΔνR are the half-width at the 1∕e intensity
level of the laser pulse and the Rayleigh backscattering,
respectively. The half-width ΔνR can be expressed as

EQ-TARGET;temp:intralink-;e005;63;354ΔνR ¼ ð8kT∕mλ2Þ1∕2; (5)

where k is the Boltzmann constant, T is the atmospheric tem-
perature, m is the average mass of the atmospheric mole-
cules, and λ is the working wavelength. The transmission
function of Rayleigh backscattering through a scanning FPI
is a convolution of hðνÞ, IMðνÞ, and IRðνÞ, which can be
expressed as a series:
EQ-TARGET;temp:intralink-;e006;63;256

TRðνÞ¼Tm ·

�
1þ2

Xþ∞

n¼1

�
Rn
e cos

�
nνπ

1þcosθ0
ΔνFSR

�

·exp

�
−n2π2ð1þcosθ0Þ2ðΔν2LþΔν2RÞ

4Δν2FSR

�
·sincðnφ0Þ

��
;

(6)

where φ0 ¼ ν0ð1 − cos θ0Þ∕ΔνFSR, ν0 is the frequency of the
laser, and θ0 is the half-maximum divergence of the colli-
mated beams to the FPI.

Since all the parameters of the FPI and the laser pulse
in Eq. (6) can be calibrated with high accuracy in advance,
in the temperature profiling experiment, the width of the
measured transmission curve is only dependent on the
width of the Rayleigh backscattering spectrum (RBS) ΔνR,
which is a function of atmospheric temperature. Therefore,

the temperature can be retrieved from the measured transmis-
sion of Rayleigh backscattering through the FPI.19

3 Optimization Algorithm
According to the principles above, the precision of temper-
ature measurement is mainly determined by the FPI. The
flowchart of the optimization algorithm of the FPI is shown
in Fig. 3, where “Conv.” represents convolution of the three
profiles and “δx” represents the sampling interval. The RBS
is obtained by substituting the atmospheric temperature and
laser wavelength into Eq. (4). Similarly, the FPI transmission
is obtained by substituting the parameters of FPI into Eq. (1).
Then, the transmission of Rayleigh backscattering is calcu-
lated as a convolution of the laser spectrum, the RBS, and the
FPI transmission, resulting a function signed as TRðνÞ in
Eq. (6). However, the function has no analytical expression.
For simplicity, first, the TRðνÞ function is approximated as a
superposition of a Gaussian function and a constant back-
ground. Second, the sampling interval is determined by set-
ting a sampling bias criterion. Finally, by calculating the
temperature error at different effective reflectance of the
FPI, the optimized effective reflectance is chosen.

3.1 Model Establishment

The convolution of the laser spectrum, the RBS, and the FPI
transmission results in a function TRðνÞ. It has a complex
form even expressed as a series form as in Eq. (6), which
is not easy for theoretical analysis.

In order to give an analytic expression of the temperature
error retrieved from HSRL adopting maximum-likelihood
estimation, the function TRðνÞ is approximated as a super-
position of a Gaussian function and a constant background.
The error of width estimation of the function TRðνÞ is
assumed equal to the error of width estimation of the
Gaussian component in the superposition function.

It is worth noting that an insufficient FSR of the FPI will
introduce system error in the temperature detection. The
transmission of an FPI is a periodic function; if the FSR is
not wide enough relative to the Rayleigh spectrum, the RBS
will stretch to the neighboring orders of the FPI during the
scanning process. In order to avoid this kind of system error,
the FSR is set as 14 GHz at a working wavelength of 355 nm.
In this case, the wing intensity of the transmission is nearly
zero.

The superposition function of a Gaussian function plus a
constant background is expressed as

EQ-TARGET;temp:intralink-;e007;326;241fðxÞ ¼ A · exp½−ðx − x̄Þ2∕2ω2� þ B; (7)

Fig. 3 Flowchart of the proposed optimization algorithm.
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where A is the amplitude of the Gaussian function, x̄ is the
position of the peak, ω is the Gaussian width, and B is the
constant background. The approximation of the transmission
of Rayleigh backscattering is shown in Fig. 4, where the
atmospheric temperature is 300 K, the working wavelength
of the laser is 355 nm, and the effective reflectance of FPI is
0.78. One can see that the residual of the approximation by a
superposition function of a Gaussian function and a back-
ground is smaller than 1%. On the contrary, if the transmis-
sion of Rayleigh backscatter is approximated as a Gaussian
function, the residual can be as large as 4%.

3.2 Optimization of the Reflectance of the FPI

The finesse of an FPI is a function of the effective reflec-
tance, expressed as

EQ-TARGET;temp:intralink-;e008;63;402Fr ¼ π
ffiffiffiffiffiffi
Re

p
∕ð1 − ReÞ: (8)

The optimal effective reflectance can be chosen by calculat-
ing the temperature error at different effective reflectances.

The maximum likelihood estimation (MLE) and the
Cramer–Rao bound (CRB) theories are used to determine
the parameter variances. On the one hand, compared with
the least-squares minimization, the MLE provides the mini-
mum-variance unbiased estimate of the parameter set for
a large number of measurements. On the other hand, the

CRB provides not just a lower bound on the variance but
the variance itself when the number of measurements is
sufficient. Thus, the variances of the parameters under esti-
mation can be obtained by using a so-called parameter
covariance matrix here rather than using some numerical
or Monte Carlo method.35

Under Poisson counting noise, the probability of
obtaining photocounts gm at pixel m is

EQ-TARGET;temp:intralink-;e009;326;664prðgmÞ ¼ expð−ḡmÞ · ḡgmm ∕gm!; (9)

where gm! is the factorial of gm.
The MLE process steps are

1. Construct the likelihood function L:

EQ-TARGET;temp:intralink-;e010;326;591L ¼ pr½gjθ� ¼
YM
m¼1

ḡgmm ∕gm! · expð−ḡmÞ; (10)

where θ ¼ ðA; x̄;ω; BÞ and M is the number of
measurements.

2. Calculate the gradient of the log-likelihood function,
often referred to as the “score”:

EQ-TARGET;temp:intralink-;e011;326;494∇l ¼ ∂
∂θi

ln L: (11)

3. Solve for the parameter set which maximizes the
score.

CRB theory states that, when the number of measure-
ments is sufficient, the covariance matrixK of the parameters
is bounded by the inverse of the Fisher information matrix F:
K ¼ F−1. The Fisher information matrix is relative to the
log-likelihood function as

EQ-TARGET;temp:intralink-;e012;326;362Fij ¼ −
Z

lðθÞð∂2l∕∂θi∂θjÞdMg: (12)

Using Eq. (7), we can obtain the symmetric Fisher matrix as
in the following equation:

EQ-TARGET;temp:intralink-;e013;63;269F ¼ δ2x ·

0
BBB@

P
SmE2

m
A
ω2

P
SmE2

mξm
A
ω3

P
SmE2

mξ
2
m

P
SmEm

· · · A2

ω4

P
SmE2

mξ
2
m

A2
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P
SmE2
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3
m

A
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P
SmEmξm

· · · · · · A2
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SmE2
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4
m

A
ω3

P
SmEmξ

2
m

· · · · · · · · ·
P

Sm

1
CCCA; (13)

where

EQ-TARGET;temp:intralink-;e014;63;170

ξm ¼ xm − x̄
Em ¼ exp½−ðxm − x̄Þ2�∕2ω2

Sm ¼ ½δxðAEm þ BÞ�−1

�
: (14)

The covariance matrix K is given by the inverse of the
above matrix. Thus, we have the variances of the param-
eters in Eq. (7) as

EQ-TARGET;temp:intralink-;e015;326;182δA ¼ K11; δx̄ ¼ K22; δω ¼ K33; δB ¼ K44: (15)

The error propagation function of temperature can be
derived by Eq. (5) as

EQ-TARGET;temp:intralink-;e016;326;136δT ¼ mλ2

4k
· ΔνR · δðΔνRÞ; (16)

where δT is the temperature measurement error and
δðΔνRÞ is the measurement error of ΔνR. As we recalled

Fig. 4 Approximations of the function TRðνÞ by two models and the
residuals.
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in the principle section, after careful calibration, the width
of the scanned transmission of Rayleigh backscattering
through the FPI is only affected by the parameter ΔνR (the
width of RBS). So, the approximation δðΔνTÞ ≈ δðΔνRÞ is
assumed here, where ΔνT is the half-width at the 1∕e
intensity level of the transmission of Rayleigh backscat-
tering and δðΔνTÞ is its error. According to the approxi-
mation model of the transmission function, Eq. (7), ΔνT
can be expressed as in the following equation:

EQ-TARGET;temp:intralink-;e017;63;435ΔνT ¼ ω

�
−2 ln

�
Aþ B − e · B

A · e

��
1∕2

: (17)

Therefore, δðΔνTÞ can be derived as

EQ-TARGET;temp:intralink-;e018;63;378δðΔνTÞ ¼
ΔνT · δω

ω
−
ω2ðA · δB − B · δAÞ · ð1 − eÞ

A · ΔνTðAþ B − e · BÞ : (18)

In the simulation, the telescope is pointed vertically to the
sky, that is, setting the zenith angle to zero. Considering the

vertical wind speed is in the order of a few centimeters per
second, its effect on the temperature detection is ignored in
this work.36 Thus, the relation between temperature error and
effective reflectance can be carried out, as shown in Fig. 5,
where the photon counts arriving at the FPI at each scanning
step are set as 400,000. As the atmospheric temperature
between 15 and 40 km varies from 210 to 255 K, one can
see that an optimized effective reflectance of 0.78 can be
chosen. And the width of the Rayleigh transmission shrinks
from 4.58 to 3.69 GHz as temperature decreases from 300 to
180 K. The relative change of the FWHM is about 20%, so
the resolution increased slightly since the spectrum narrows.
One should note that the final width we measured is the
transmission of Rayleigh backscatter through the FPI. The
temperature error as a function of the atmospheric temper-
ature and the photon counts is also calculated and illustrated
in Fig. 6 to estimate the performance of the HSRL technique.

4 Performance Estimation
To evaluate the performance of an HSRL for atmospheric
temperature measurement, the analytical detection result is
simulated. The key parameters of the optimized HSRL are
listed in Table 1; some system characteristics are chosen
according to our existing system.19 The flash-pumped and
frequency-tripled Nd:YAG laser (Continuum Model
Powerlite 9050) is used in the HSRL system. The PMTs
(HAMAMATSU Model R7400P-03) are used for detecting
Rayleigh backscattering. Transient recorders (Licel Model
TR 20-16bit) are used for signal acquisition, which provide
extra dynamic range by employing analog-to-digital detec-
tion and single photon counting simultaneously.

The lidar equation used in the simulation is

EQ-TARGET;temp:intralink-;e019;326;399Nðλ; RÞ ¼ E
A0ξðRÞ
hνR2

cτL
2

ξRβRðλ; RÞ · T2
aðλ; RÞ; (19)

where N is the photocounts detected in the distance of R, λ is
the wavelength of the outgoing laser, E is the energy of a
laser pulse, A0 is the area of the telescope aperture, ξðRÞ is
the overlap factor, ξR is the total optical efficiency of the
receiver, βR is the backscattering coefficient of molecular:

EQ-TARGET;temp:intralink-;e020;326;302Taðλ; RÞ ¼ exp

�
−
Z

R

0

σðλ; rÞdr
�
; (20)

which is the transmission factor of atmosphere, and σ is the
atmospheric attenuation coefficient.37 The transmission of
the receiver in Xia’s system can be calculated by the efficien-
cies listed in Table 1.19

With the atmospheric parameters extracted from the U.S.
standard atmosphere 1976, the intensity and spectra of
Rayleigh backscattering at different altitudes can be calcu-
lated under clear and hazy weather conditions. According to
the raw data in the experiment we carried out at Delhi in
2013, the backscattering photons collected by the telescope
at each scanning step using the optimized HSRL can also be
calculated, as shown in Fig. 7. The solid line is the simulated
photon counts detected under clear weather conditions, the
dotted line is under hazy weather conditions, and the dashed
line is the simulated photon counts according to the raw data
taken at Delhi by Xia on December 23, 2013.19 The vertical
resolutions are set as 100 m in 15 to 20 km, 500 m in 20 to

Fig. 5 Atmospheric temperature error versus efficient reflectance at
different temperatures.

Fig. 6 Temperature error as a function of atmospheric temperature
and photon counts arriving at the FPI at each scanning step.
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30 km, and 1 km above 30 km. The integration time at each
step is set to be 1 min.

The temperature error is estimated in Fig. 8 using the
Rayleigh backscattering profile and spectra. The HSRL
behaves well in the clear sky model with the error lower
than 0.3 K in 15 to 30 km and lower than 1 K in 30 to
40 km. In hazy weather, the max error in the height of
40 km is about 10 K. Temperature errors as large as 10 K

are inadequate for climatological models. However, since
the temperature error is relative to photocounts, as shown
in Fig. 6, adaptive accuracy can be realized by changing inte-
gration times as well as the range gate extent.

5 Immunity Against Mie Contamination
In the introduction we mentioned that the Rayleigh integra-
tion lidar suffers from the disturbance of aerosol contamina-
tion in the troposphere and low stratosphere. However, the
temperature measurements by HSRL can be compensated
for the presence of Mie scattering signals. Furthermore,
both aerosol content and temperature measurements are valu-
able. In order to verify these abilities of HSRL, the immunity
for atmospheric temperature profiling against aerosol con-
tamination is demonstrated in the following simulations.

As aerosol contamination is considered, the lidar equation
should be updated as
EQ-TARGET;temp:intralink-;e021;326;122

NTðλ;RÞ ¼ E
A0ξðRÞ
hνR2

cτL
2

ξR½βRTRðνÞþ βMTMðνÞ� · T2
aðλ;RÞ;

(21)

Table 1 Key parameters of the HSRL.

Instrument parameter Value

Laser

Wavelength (nm) 355

1/e width (MHz) 200

Pulse energy (mJ) 250

Pulse repetition rate (Hz) 50

Telescope

Telescope aperture (mm) 1000

Focal length (mm) 2217

Field of view (mrad) 0.09

Optical efficiency 0.36

Coupling efficiency 0.75

Fiber transmission 0.82

FPI

FSR (GHz) 14

Effective reflectivity 0.78

FWHM of channels (GHz) 1.5

Sampling interval (MHz) 500

Sampling steps 28

Optics efficiency 0.9

Photomultiplier tube

Cathode sensitivity (mA∕W) 62

Dark counts (c∕s) 80

Single photon rise time (ns) <1.3

Single photon width (ns) <2.2

Quantum efficiency 0.22

Transient recorders

ADC resolution (bit) 16

ADC sampling rate (MSamples∕s) 20

Bin length (m) 7.5

Max. photon counting rate (MHz) 250

Fig. 7 Simulation results: the backscattering intensity profiles col-
lected by the telescope at each scanning step (before passing through
the FPI). The altitude resolution is switched from 100 to 500 m at
20 km and switched from 500 to 1000 m at 30 km.

Fig. 8 The simulated temperature measurement error as a function of
height.
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where the transmission of Mie backscattering through the
FPI TMðνÞ can be expressed as
EQ-TARGET;temp:intralink-;e022;63;518

TMðνÞ ¼ Tm ·

�
1þ 2

Xþ∞

n¼1

�
Rn
e cos

�
nνπ

1þ cos θ0
ΔνFSR

�

· exp

�
−n2π2ð1þ cos θ0Þ2 · Δν2L

4Δν2FSR

�
· sincðnφ0Þ

��
:

(22)

The backscattering coefficients of aerosol and molecules
βM and βR at 355 nm can be calculated, respectively, from
the U.S. Standard Atmosphere 1976, as shown in Fig. 9.

Using atmospheric temperature–pressure–density profiles
from the U.S. Standard Atmosphere 1976 under clear weather
conditions and system parameters, as listed in Table 1, the
scanned transmission curves of the atmospheric backscatter-
ing through the FPI at different altitudes are simulated using
a Monte Carlo computer program, in which the arriving pho-
tons follow a Poisson distribution at each scanning step. The
integration time at each step is set to be 1 min. The simula-
tion results are plotted at different altitudes, as shown in
Fig. 10. Taking advantage of the fact that the Rayleigh back-
scattering cross section is proportional to λ−4, even the UV
working wavelength is used, the superimposed transmission
of Mie and Rayleigh through the FPI deviates from the
Gaussian function.

Fortunately, by applying a least squares fit procedure to
Eq. (22), the atmospheric temperature, Mie backscattering
coefficient, and Rayleigh backscatter coefficient can be
retrieved simultaneously.14,19 As we pointed out in the earlier
work, reasonable initial values of parameters under estima-
tion guarantee the convergence of the nonlinear fitting. So,
the Klett–Fernald inversion algorithm is suggested to distin-
guish the Mie backscattering from the Rayleigh backscatter-
ing in advance.38,39

In order to illustrate the convergence property of the best
fit procedure to Eq. (22), the initial values of the Mie back-
scattering coefficients are set as 50% and 150% of the
assumed known value, which are shown as “Initial Value
1” and “Initial Value 2” in Fig. 11. Then, both Mie backscat-
tering profiles and temperature profiles are compared to the
data obtained from the U.S. Standard Atmosphere 1976.

The result shows that the retrieved temperature and Mie
backscattering profiles match with the assumed known val-
ues. In Fig. 11, simulations are performed 40 times at each
altitude; then statistics of these data show both the variances
of the temperature and Mie backscattering coefficients as
plotted as the error bars in the figures. The temperature var-
iances show good agreement with the prediction, as plotted
in Fig. 8. Thus, even when poor estimation of the Mie back-
scattering coefficients is used as the initial value for the best
fit, both the temperature and Mie backscattering profiles can
be obtained correctly.

Fig. 9 Rayleigh and Mie backscattering coefficients extracted from
the U.S. Standard Atmosphere 1976 under clear weather conditions
at 355 nm.

Fig. 10 Simulated photon counts of transmitted backscattering
through the FPI. The height resolution is 100 m at 20 km and
1000 m at 40 km. The dashed lines, dotted lines, and solid lines
are the ideal signals; the squares, filled circles, and triangles are
the simulated photon counts.

Fig. 11 (a) Simulation of Mie backscattering coefficient (red dot with
error bar). The solid line is the coefficients from the atmospheric
model, and the blue dotted line and purple dotted line are the initial
values of the least squares fitting, which are 50% and 150% of the
model. (b) Comparison between the simulated temperature values
(red dots with error bar) and the temperature from atmospheric
model (solid line).
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6 Conclusion
An optimization algorithm was proposed as the guidance for
future design of the HSRL for temperature profiling in the
altitude near the tropopause. Key parameters, such as the
sampling steps, FSR, and effective reflectance of the scan-
ning FPI, were optimized for the operation of the system.
Using these optimized parameters and existing system char-
acteristics, one can estimate the performance of the HSRL.
Simulations showed that temperature error <2 K can be
achieved in the altitude range of 15 to 40 km under clear
weather conditions. The immunity of HSRL to the aerosol
contamination was also demonstrated.
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